Московский государственный университет имени М.В. Ломоносова Химический факультет Кафедра Электрохимии Лаборатория Химии Высоких Энергий

Численное построение фазовой диаграммы системы частиц с близкодействующими силами

Курсовая работа студентки 411 группы Брилинг Ксении Романовны

Научный руководитель: к.ф-м.н., с.н.с. Лайков Д.Н.

Преподаватель: к.ф-м.н., доц. Боченкова А.В.

> Москва 2017

Содержание

1	Вве	едение		2				
2	Обз	Обзор литературы						
	2.1	Термо	одинамические свойства вещества	4				
	2.2	Прост	сые модели взаимодействия частиц вещества	5				
	2.3	Перис	одические граничные условия	8				
		2.3.1	Давление	9				
	2.4	Числе	енное решение уравнений Ньютона	11				
	2.5	Станд	цартная ошибка среднего	12				
3	Экс	сперим	иентальная часть	15				
	3.1	Потен	щиал взаимодействия между частицами	15				
	3.2	Прогр	рамма	18				
		3.2.1	Входные данные	18				
		3.2.2	Схема работы программы	19				
		3.2.3	Расчёт энергии и её производных	21				
		3.2.4	Проверка правильности работы программы	22				
	3.3	Числе	енный опыт	23				
		3.3.1	Идеальный кристалл	23				
		3.3.2	Построение фазовой диаграммы	25				
4	Обо	суждеі	ние	31				
	4.1	Кусоч	но-многочленный потенциал	31				
	4.2	Измер	рение производительности вычислений	31				
	4.3	Агрег	атные состояния вещества	32				
	4.4	Фазов	зая диаграмма	34				
5	Вы	воды		36				
C	писо	к лите	эратуры	38				
Π	рилс	жение	2	42				

1 Введение

Умение предсказывать свойства вещества в жидком и твёрдом состоянии ценно не только само по себе, но и для ряда прикладных задач химии и смежных наук. Строгое решение такой задачи даёт статистическая термодинамика, применение подходов которой неотвратимо приводит к необходимости большого объёма вычислений. В этой области ещё долгое время будет оставаться простор для усовершенствования приближений, моделей и численных методов. Изучение общих закономерностей на упрощённых моделях бывает не менее полезно, чем работа с определёнными веществами, прямой перебор которых может быть слишком затратен.

Начиная с первых работ по жёстким сферам[1, 2] и последующего применения модельных аналитических потенциалов, самый известный из которых — потенциал Леннард-Джонса[3, 4], система частиц с парными взаимодействиями до сих пор[5] служит удобным объектом для отработки вычислительных методов. Даже такие простые модели в общем случае имеют вычислительную сложность $\sim N^2$, где Nчисло частиц, и при изучении фазовых свойств и превращений возможность их применения весьма ограничена. Одна из возможностей преодоления этой трудности и сведения сложности задачи до $\sim N$ состоит в применении короткодействующих потенциалов, имеющих ненулевое значение только в пределах некоторого заданного расстояния между частицами. Взаимодействие такого рода может иметь и физическую природу, например, потенциал Герца[6] в контактной задаче теории упругости равен нулю за пределами расстояния соприкосновения тел, а после касания растёт как $d^{5/2}$, и спустя 127 лет применяется в расчётах моделей коллоидных систем.

Цели нашей работы:

- построить новый короткодействующий кусочно-многочленный потенциал, приближающий потенциал Леннард-Джонса в окрестности ямы;
- создать программу на языке С для проведения молекулярнодинамических расчётов микроканонического ансамбля с периодическими граничными условиями и линейной зависимостью от размера задачи, в которой применяется выведенный потенциал и вычисляются термодинамические свойства;
- с помощью созданной программы построить диаграмму состояния вещества с таким взаимодействием частиц в окрестности тройной точки в координатах E — V.

Полученный и испытанный потенциал может оказаться полезной заменой потенциала Леннард-Джонса для полуколичественных оценок поведения вещества в ряде задач благодаря своей пониженной вычислительной сложности — для его вычисления требуются лишь небольшое число умножений и сложений.

Ключевые слова: статистическая термодинамика, молекулярная динамика, фазовые диаграммы, парные потенциалы, численные методы.

3

2 Обзор литературы

2.1 Термодинамические свойства вещества

Вещества состоят из большого числа частиц, и их наблюдаемые свойства соответствуют величинам, усреднённым как по всем частицам, так и по времени. В термодинамике принимается эргодическая гипотеза, согласно которой усреднение по времени можно заменить усреднением по всем состояниям системы (по статистическому ансамблю), совместимым с заданными условиями.[7] Четыре наиболее часто рассматриваемых типа ансамбля — микроканонический (NVE), в котором сохраняется энергия и заданы число частиц и объём; канонический (NVT), в котором система обменивается энергией с окружением при заданной температуре; изобарно-изотермический (NPT), в котором вместо сохранения объёма вводится постоянство давления; а также большой канонический (μVT) , в котором система обменивается с окружением энергией и частицами при заданных температуре и химическом потенциале. В пределе $N \to \infty$ эти ансамбли эквивалентны в смысле вычисляемых средних величин.[8]

Зная микроскопические свойства вещества — энергию взаимодействия частиц в зависимости от их пространственного расположения — можно вычислить макроскопические термодинамические свойства, такие как температура, давление, поверхностное натяжение, плотность, фазовый состав, вязкость, коэффициент диффузии. В силу многомерности и сложности требуемых интегралов здесь неизбежно применение численных подходов, которые можно условно подразделить на стохастические методы Монте-Карло[1], в которых перебираются точки в конфигурационном пространстве с использованием случайных (или псевдослучайных) чисел, и методы молекулярной динамики[2], в которых вычисляется траектория движения частиц в соответствии с некоторыми дифференциальными уравнениями, в простейшем случае — уравнениями Ньютона.

2.2 Простые модели взаимодействия частиц вещества

Модельные потенциалы можно разделить по многим признакам: парно-аддитивные и включающие трёхчастичные взаимодействия и выше; изотропные и неизотропные; чисто отталкивательные и учитывающие притяжение; конечные при сближении частиц до расстояния r = 0 и бесконечные; обнуляющиеся при заданном расстоянии и только стремящиеся к нулю.

Простейшая модель взаимодействия двух частиц — модель жёстких сфер:

$$U_{\rm HS}(r) = \begin{cases} \infty, & r < \sigma \\ 0, & \sigma \le r \end{cases},$$

где σ — диаметр сферы. Первый молекулярно-динамический расчёт[2] был проведён именно для таких частиц. Они могут существовать в двух состояниях — «жидком» и твёрдом[9]. Для описания жидких кристаллов иногда используют модель жёстких закруглённых цилиндров, у которых сверх того есть смектическая и нематическая фазы[10].

Более реалистичной альтернативой жёстким сферам является потенциал мягких сфер

$$U_{\rm SS}(r) = \epsilon \left(\sigma/r\right)^n,$$

для которых возможны фазовые переходы между гранецентрированной и объёмноцентрированной кристаллическими решётками[11].

Хорошо физически обоснован другой отталкивательный потенциал — потенциал Герца[6, 12] — решение контактной задачи теории

упругости:

$$U_{\rm H}(r) = \begin{cases} \varepsilon (1 - r/\sigma)^{5/2}, & r < \sigma \\ 0, & \sigma \le r \end{cases}$$

Фазовая диаграмма для вещества с таким взаимодействием получена в работе [5]; оно может быть моделью мицелл или звездчатых полимеров. Также работают с более сложными потенциалами, учитывающими деформацию тел при соприкосновении[13].

Перечисленные модели не включают в себя притяжение между частицами и не могут воспроизвести различие между жидким и газообразным состояниями. Наиболее простые способы добавить притяжение — это прямоугольная

$$U_{\rm SW}(r) = \begin{cases} \infty, & r < \sigma_1 \\ -\varepsilon, & \sigma_1 \le r < \sigma_2 \\ 0, & \sigma_2 \le r, \end{cases}$$

треугольная или трапецеидальная ямы[14], имеющие «нефизичный» разрыв первой производной.

Наиболее распоространённая модель взаимодействия двух неполярных молекул — потенциал Леннард-Джонса[15]

$$U_{\rm LJ}(r) = 4\varepsilon \left(\left(\frac{\sigma}{r}\right)^{12} - \left(\frac{\sigma}{r}\right)^6 \right),$$

где ε — глубина потенциальной ямы и $2^{1/6}\sigma$ — её положение. Существует обобщение[16] на несферические молекулы (потенциал Кихары), в котором вместо расстояния между центрами сфер используется некоторое другое характеристическое расстояние, например, кратчайшая дистанция между осями скруглённых цилиндров. Иногда используют аналогичные по форме выражения с другими показателями степени[17]. Потенциал Леннард-Джонса воспроизводит асимптотическую зависимость энергии притяжения при $r \to \infty$, вызванную дисперсионным взаимодейстием, однако отвечающий за отталкивание член $\sim r^{-12}$ физически не обоснован; более точно отталкивание описывает потенциал Букингема[18]

$$b\exp(-r/\rho) - \mu r^{-6}$$

Для уменьшения времени расчёта и применения периодических граничных условий обычно используют потенциал, усечённый на некотором расстоянии r_c (например, $r_c = 2.5\sigma$)[4]

$$U_{\rm tr}(r) = \begin{cases} U_{\rm LJ}(r), & r < r_c \\ 0, & r_c \le r \end{cases}$$

или усечённый и «сдвинутый» [19]:

$$U_{\rm tr,sh}(r) = \begin{cases} U_{\rm LJ}(r) - U_{\rm LJ}(r_c), & r < r_c \\ 0, & r_c \le r \end{cases}$$

Также иногда потенциальную функцию и её производную сглаживают в окрестности r_c при помощи кубического сплайна[20].

Свойства вещества, состоящего из частиц Леннард-Джонса, изучались многими исследователями начиная с первых работ по методам Монте-Карло и молекулярной динамики. Оно может существовать в газообразном, твёрдом и двух кристаллических состояниях (кубическая и гексагональная плотнейшие упаковки)[21].

2.3 Периодические граничные условия

В системах из небольшого количества частиц велики поверхностные эффекты (у куба из 10^3 частиц доля частиц на поверхности 48.8%, а у куба из $20^3 - 27.1\%$). Поэтому для изучения фазы вещества и в методах Монте-Карло[1], и в молекулярной динамике[2] применяют периодические граничные условия: частицы помещаются в ячейку, например кубическую, и когда частица покидает ячейку, она возвращается в неё с противоположной стороны, сохраняя скорость, — вещество описывается периодической решёткой из таких ячеек. Ошибка в определении вириальных коэффициентов (по сравнению с действительно бесконечной системой) имеет порядок 1/N [2], где N — число частиц в ячейке.

Лагранжиан системы инвариантен относительно трансляций и неинвариантен относительно поворотов, поэтому импульс центра масс постоянен; даже если он равен нулю, положение центра масс скачком изменяется каждый раз, когда частица пересекает границу ячейки. Напротив, момент импульса не сохраняется, и в периодической системе его нельзя однозначно определить.[22]

Расчёт энергии. Для вычисления энергии бесконечной системы нужно бесконечное число слагаемых. Существует несколько способов этого избежать. Если взаимодействия короткодействующие,

- потенциал взаимодействия обрезается (приравнивается к нулю) дальше некоторого расстояния между частицами или
- для взаимодействия с *i*-й частицей из всех возможных копий *j*-й выбирается та, для которой расстояние r_{ij} наименьшее[1].

Если взаимодействие дальнодействующее, используют суммирование Эвальда[23, 24]: суммирование ряда в реальном пространстве заменяют рядом в обратном пространстве, который сходится быстрее. Для частиц с постоянным дипольным моментом также применяют метод реакционного поля[25]: молекула считается находящейся в полости внутри сплошной среды и взаимодействует с другими молекулами полости и с поляризованной ими средой.

Форма ячейки. Чаще всего используют кубическую ячейку из-за её простоты. Для изучения изотропного вещества могут быть полезны ромбододекаэдр или усечённый октаэдр — в таких ячейках при том же объёме расстояние между ближайшими копиями меньше, чем в кубических. В случае твёрдого тела, если симметрия ячейки несовместима с симметрией кристалла, в кристалле возникает анизотропное механическое напряжение. Существуют варианты молекулярной динамики и Монте-Карло «с постоянным напряжением», где параметры, описывающие форму ячейки, являются динамическими переменными. Если поддерживаемое напряжение изотропно, можно получить неискажённый кристалл.[22]

2.3.1 Давление

Для системы из Nчастиц в сосуде
[26] справелива теорема о вириале

$$2 \langle E_{\rm kin} \rangle = - \left\langle \sum_{i=1}^{N} \vec{r_i} \vec{F_i}^{\rm tot} \right\rangle,$$

где $\langle ... \rangle$ — усреднение по времени, $\vec{F}_i^{\text{tot}} = \vec{F}_i + \vec{F}_i^{\text{ext}}$ — сумма всех сил, действующих на *i*-ую частицу (со стороны сосуда \vec{F}_i^{ext} и со стороны других частиц \vec{F}_i). Поскольку давление — перпендикулярная составляющая силы, действущей со стороны молекул на единичный элемент площади сосуда, а $\langle E_{\text{kin}} \rangle = \frac{3}{2}NkT$,

$$P = \frac{NkT}{V} + \left\langle \frac{1}{3V} \sum_{i=1}^{N} \vec{r_i} \vec{F_i} \right\rangle.$$
(1)

В случае парно-аддитивного потенциала это можно переписать как

$$P = \frac{NkT}{V} + \left\langle \frac{1}{6V} \sum_{i=1}^{N} \sum_{j=1}^{N} \vec{r}_{ij} \vec{F}_{ij} \right\rangle, \qquad (2)$$

где $\vec{r}_{ij} = \vec{r}_i - \vec{r}_j$ и \vec{F}_{ij} — сила, действующая на *i*-ую частицу со стороны *j*-ой.

Для вывода[27] выражения для давления в периодической системе используется равенство

$$P = -\left(\frac{\mathrm{d}U}{\mathrm{d}V}\right)_{S} = \frac{NkT}{V} - \left\langle\frac{\mathrm{d}U'}{\mathrm{d}V}\right\rangle,$$

где U^\prime - потенциальная энергия. Для кубической ячейки со стороной L

$$U' = U'(\vec{r_1}, \ldots, \vec{r_N}, L).$$

dU'/dV складывается из зависимости энергии от L при неизменных положениях атомов (меняется расстояние между ячейками) и при масштабировании координат вместе с ячейкой:

$$\frac{\mathrm{d}U'}{\mathrm{d}V} = \frac{\mathrm{d}L}{\mathrm{d}V} \left(\frac{\partial U'}{\partial L} + \sum_{i=1}^{N} \frac{\partial U'}{\partial \vec{r_i}} \frac{\partial \vec{r_i}}{\partial L} \right) = \frac{1}{3L^2} \frac{\partial U'}{\partial L} + \frac{1}{3V} \sum_{i=1}^{N} \frac{\partial U'}{\partial \vec{r_i}} \vec{r_i},$$

и тогда

$$P = \frac{NkT}{V} + \left\langle \frac{1}{3V} \sum_{i=1}^{N} \vec{r_i} \vec{F_i} - \frac{1}{3L^2} \frac{\partial U'}{\partial L} \right\rangle \tag{3}$$

В непериодической системе $\partial U'/\partial L = 0$ и (3) переходит в (1). Можно получить выражение, аналогичное (2):

$$P = \frac{NkT}{V} + \left\langle \frac{1}{6V} \sum_{i=1}^{N} \sum_{j=1}^{MN} \vec{r}_{ij} \vec{F}_{ij} \right\rangle, \tag{4}$$

где *М* — число взаимодействующих копий ячейки.

2.4 Численное решение уравнений Ньютона

Закон движения N классических частиц определяется системой 3N дифференциальных уравнений второго порядка

$$\frac{\mathrm{d}^2 \vec{r_i}}{\mathrm{d}t^2} \equiv \vec{a_i} = \frac{\vec{F_i}}{m_i} \qquad (i = 1, \dots, N)$$

или эквивалентной системой 6N уравнений первого порядка

$$\frac{\mathrm{d}\vec{r_i}}{\mathrm{d}t} = \vec{v_i}; \quad \frac{\mathrm{d}\vec{v_i}}{\mathrm{d}t} = \frac{\vec{F_i}}{m_i}$$

 $(m_i, \vec{r_i}, \vec{u_i}, \vec{a_i} - \text{масса}, \text{координаты}, \text{скорость и ускорение$ *i* $-ой частицы, <math>\vec{F_i} - \text{действующая}$ на неё сила; $\vec{r}, \vec{v}, \vec{a} - 3N$ -мерные векторы соответствующих величин).

При численном решении уравнений движения непрерывные функции заменяются их значениями в дискретные моменты времени, а дифференциальные уравнения заменяются алгебраическими. Имея значения координат и скоростей в момент времени t, нужно получить их в следующий момент $t + \Delta t$.

Метод Верле [4]. Если разложить вектор координат в ряд Тейлора в окрестности $\vec{r}(t)$

$$\vec{r}(t+\Delta t) = \vec{r}(t) + \frac{\mathrm{d}\vec{r}}{\mathrm{d}t}(t) \cdot \Delta t + \frac{\mathrm{d}^2\vec{r}}{\mathrm{d}t^2}(t) \cdot \frac{\Delta t^2}{2} + \frac{\mathrm{d}^3\vec{r}}{\mathrm{d}t^3}(t) \cdot \frac{\Delta t^3}{6} + \mathcal{O}(\Delta t^4),$$

$$\vec{r}(t-\Delta t) = \vec{r}(t) - \frac{\mathrm{d}\vec{r}}{\mathrm{d}t}(t) \cdot \Delta t + \frac{\mathrm{d}^2\vec{r}}{\mathrm{d}t^2}(t) \cdot \frac{\Delta t^2}{2} - \frac{\mathrm{d}^3\vec{r}}{\mathrm{d}t^3}(t) \cdot \frac{\Delta t^3}{6} + \mathcal{O}(\Delta t^4),$$

исключить первую производную и пренебречь слагаемыми $\lesssim \Delta t^4$, можно получить выражение для координат в следующий момент времени без использования скоростей:

$$\vec{r}(t + \Delta t) = 2\,\vec{r}(t) - \vec{r}(t - \Delta t) + \vec{a}(t) \cdot \Delta t^2 \tag{5}$$

При необходимости скорости вычисляются как

$$\vec{v}(t) = \frac{\vec{r}(t + \Delta t) - \vec{r}(t - \Delta t)}{2 \cdot \Delta t} \tag{6}$$

Как и исходные уравнения, выражение (5) обратимо во времени; в консервативной системе при использовании метода сохраняется полный импульс и хорошо сохраняется полная энергия даже при больших Δt .

Схема с перешагиванием (leapfrog)[28] — алгебраически эквивалентный методу Верле метод:

$$\vec{v}(t + \Delta t/2) = \vec{v}(t - \Delta t/2) + \Delta t \cdot \vec{a}(t)$$
(7a)

$$\vec{r}(t + \Delta t) = \vec{r}(t) + \Delta t \cdot \vec{v}(t + \Delta t/2)$$
(7b)

Скорость в момент времени t получают как

$$\vec{v}(t) = \frac{\vec{v}(t - \Delta t/2) + \vec{v}(t + \Delta t/2)}{2},$$
(8)

здесь нет вызывающего ошибки округления вычитания двух близких по значению чисел, как в (6).

Однако для первого шага обоих этих методов не подходят «естественные» начальные условия $\vec{r}(t = 0), \vec{v}(t = 0)$. Этого недостатка лишён т. н. **метод скоростей Верле**[29]:

$$\vec{r}(t + \Delta t) = \vec{r}(t) + \Delta t \cdot \vec{v}(t) + \frac{\Delta t^2 \cdot \vec{a}(t)}{2}$$
(9a)

$$\vec{v}(t + \Delta t) = \vec{v}(t) + \Delta t \cdot \frac{\vec{a}(t) + \vec{a}(t + \Delta t)}{2}$$
(9b)

2.5 Стандартная ошибка среднего

Кроме средних значений физических величин за время опыта полезно знать точность, с которой они определяются.

Пусть $\{x_1, \ldots x_n\}$ — выборка из распределения величины $x, \bar{x} = \frac{1}{n} \sum_{i=1}^n x_i$ — выборочное среднее, $s^2(x) = \frac{1}{n-1} \sum_{i=1}^n (\bar{x} - x_i)^2$ — исправленная оценка дисперсии x. Дисперсия суммы случайных величин

$$\sigma^2\left(\sum_{i=1}^n x_i\right) = \sum_{i,j=1}^n \operatorname{cov}(x_i, x_j) = n \,\sigma^2(x) + 2\sum_{i< j} \operatorname{cov}(x_i, x_j),$$

тогда дисперсия выборочного среднего

$$\sigma^{2}(\bar{x}) = \sigma^{2}\left(\frac{1}{n}\sum_{i=1}^{n}x_{i}\right) = \frac{\sigma^{2}(x)}{n} + \frac{2}{n^{2}}\sum_{i< j}\operatorname{cov}(x_{i}, x_{j}).$$
(10)

Если все x_i нескоррелированы ($cov(x_i, x_j) = 0$), справедливо

$$\sigma^2(\bar{x}) = \frac{\sigma^2(x)}{n} \approx \frac{s^2(x)}{n}.$$

Однако значения физических величин, полученные в близкие моменты времени, сильно скоррелированы. Для определения $\sigma^2(\bar{x})$ нужно либо оценить $\operatorname{cov}(x_i, x_j)$, либо разбить выборку на части такого размера, чтобы средние значения частей были независимы.

Явное вычисление ковариации [30]. Если ввести коэффициенты автокорреляции $\rho_k = c_k/c_0$, где $c_k = \text{cov}(x_i, x_{i+k})$ (в стационарных рядах не зависят от i; $c_0 = \sigma^2(x)$), можно переписать (10) как

$$\sigma^2(\bar{x}) = \frac{c_0}{n} \left(1 + 2\sum_{k=1}^{n-1} \left(1 - \frac{k}{n} \right) \rho_k \right)$$

Если n много больше, чем максимальный промежуток, для которого ρ_k отличен от нуля,

$$\sigma^2(\bar{x}) \approx \frac{c_0}{n} \left(1 + 2\sum_{k=1}^{\infty} \rho_k \right) = \frac{\sigma^2(x)}{n} \left(1 + 2\tau \right)$$

и формальное количество независимых точек в выборке $n/(1+2\tau)$.

Простейшая используемая на практике оценка ковариации —

$$c_i \approx \frac{1}{n-k} \sum_{i=1}^{n-k} (\bar{x} - x_i)(\bar{x} - x_{i+k}).$$

При увеличении k значение c_i приближается всё менее точно из-за уменьшения числа слагаемых в сумме. Поэтому или суммирование $\sum \rho_k$ останавливают, когда ρ_k становится меньше заданного порогового значения, или аппроксимируют последовательность какой-либо затухающей функцией. «Блочный» метод [31]. Этот способ также теоретически обоснован, прост в вычислении, не требует никаких дополнительных параметров и автоматически даёт $\sigma^2(\bar{x})$ и ошибку в её определении.

Делается преобразование исходного набора $\left\{x_{1}^{(0)}, \ldots x_{n_{0}}^{(0)}\right\}$ в набор $\left\{x_{1}^{(1)}, \ldots x_{n_{1}}^{(1)}\right\}$, где $x_{i}^{(1)} = \frac{1}{2}\left(x_{2i-1}^{(0)} + x_{2i}^{(0)}\right)$ и $n_{1} = n_{0}/2$. При этом интересующие нас величины не изменяются: $\bar{x}^{(1)} = \bar{x}^{(0)}$ и $\sigma^{2}\left(\bar{x}^{(1)}\right) = \sigma^{2}\left(\bar{x}^{(0)}\right)$. Преобразование может повторяться до тех пор, пока новый набор не будет состоять из двух элементов. На каждом шагу вычисляется $S_{j}^{2} = s^{2}\left(x^{(j)}\right)/n_{j}$. С уменьшением n_{j} величина S_{j}^{2} сходится к некоторому значению, которое и является оценкой $\sigma^{2}(\bar{x})$.

В окрестности предельной точки можно оценить ошибку в определении $\sigma^2(\bar{x})$:

$$\sigma^2(\bar{x}) \approx S_j^2 \cdot \left(1 \pm \sqrt{\frac{2}{n_j - 1}}\right),\tag{11}$$

$$\sigma(\bar{x}) \approx S_j \cdot \left(1 \pm \frac{1}{\sqrt{2(n_j - 1)}}\right) \tag{12}$$

Если $S_{j+1}^2 - S_j^2 < S_j^2 \sqrt{2/(n_j - 1)}$ или $S_{j+1} - S_j < S_j / \sqrt{2(n_j - 1)}$, сходимость можно считать достигнутой.

3 Экспериментальная часть

3.1 Потенциал взаимодействия между частицами

В качестве модельного потенциала взаимодействия двух частиц была выбрана функция вида

$$U_q^p(r) = \begin{cases} c \left(b^2 - r^2 \right)^p - d \left(b^2 - r^2 \right)^q, & r \le b \\ 0, & b < r, \end{cases}$$

где $c, d > 0, q, p \in \mathbb{N}, p > q$ (рис. 1). Он удобен для работы тем, что:

- в потенциальную энергию системы не вносят вклад пары частиц, расстояние между которыми больше *b*;
- для вычисления используются только операции сложения и умножения.

Пусть $r_{\rm m}$ — положение минимума потенциальной кривой, u_0 — энергия в этой точке, r_0 — расстояние, на котором энергия взаимодействия равна нулю:

$$\begin{cases} U_q^p(r_0) = 0\\ \frac{\partial U_q^p}{\partial r}\Big|_{r_{\rm m}} = 0\\ U_q^p(r_{\rm m}) = u_0 \end{cases}$$

Первое уравнение можно переписать как

$$c = d \left(b^2 - r_0^2 \right)^{q-p},$$

тогда при $r \leq b$

$$U_q^p = \frac{d}{\left(b^2 - r_0^2\right)^q} \left(\left(\frac{b^2 - r^2}{b^2 - r_0^2}\right)^p - \left(\frac{b^2 - r^2}{b^2 - r_0^2}\right)^q \right) = \tilde{c} \left(t^p - t^q\right), \quad (13)$$

Рис. 1: Потенциал Леннард-Джонса, использованный в этой работе потенциал (p = 50, q = 7) и разность между ними.

где $t(r) = \frac{b^2 - r^2}{b^2 - r_0^2}$, $t_m = t(r_m)$. Тогда из условия $U_q^p(r_m) = u_0$ следует $\tilde{c} = u_0 / (t_m^p - t_m^q)$.

Условие положения точки минимума эквивалентно

$$\frac{\partial U_q^p}{\partial t}\Big|_{t_{\rm m}} = pt_{\rm m}^{p-1} - qt_{\rm m}^{q-1} = 0,$$

отсюда

$$t_{\rm m} = (p/q)^{1/(q-p)}$$

и можно получить

$$b = \sqrt{\frac{t_{\rm m} r_0^2 - r_{\rm m}^2}{t_{\rm m} - 1}}.$$

Таким образом, для данных r_0, r_m, u_0 и произвольных p, q можно однозначно вычислить все параметры потенциала (\tilde{c} и b).

Потенциал Леннард-Джонса с теми же положением и глубиной ямы имеет вид

$$U_{\rm LJ}(r) = \varepsilon \left(\left(\frac{r_{\rm m}}{r} \right)^{12} - 2 \left(\frac{r_{\rm m}}{r} \right)^6 \right),$$

где $\varepsilon = -u_0$. Для него $r_0 = 2^{-1/6} r_{\rm m}$, что и использовалось для получения параметров. Натуральные p и q подбираются так, чтобы вторая производная в яме

$$\frac{\partial^2 U_q^p}{\partial r^2}\Big|_{r_{\rm m}} = \frac{4\,\tilde{c}\,r_{\rm m}^2}{\left(b^2 - x_0^2\right)^2} \left(p\,(p-1)\,t_{\rm m}^{p-2} - q\,(q-1)\,t_{\rm m}^{q-2}\right)$$

была как можно ближе ко второй производной потенциала Леннард-Джонса

$$\frac{\partial^2 U_{\rm LJ}}{\partial r^2}\Big|_{r_{\rm m}} = 72\,\varepsilon/r_{\rm m}^2$$

Перебором $(p \in [3; 100], q < p)$ получены значения p = 50, q = 7, длякоторых параметры потенциала и критерии применимости равны

b	2.325838011598 $r_{\rm m}$
\tilde{c}	1.601415256088 ε
С	4466.815876357 ε
d	4.862651373833 ε
$\frac{\partial^2 U^p_q}{\partial r^2}\Big _{r_{\rm m}} - \frac{\partial^2 U_{\rm LJ}}{\partial r^2}\Big _{r_{\rm m}}$	$0.002059413097 \ \varepsilon/r_{\rm m}^2$
$U^p_q(0)$	$4.461953\cdot 10^3 \varepsilon$

Далее $r_{\rm m}$ и ε приняты за единицы измерения длины и энергии соответственно.

3.2 Программа

Была написана программа на языке C для интегрирования уравнений движения методом скоростей Верле (уравнения (9)) системы частиц одного сорта, взаимодействующих по закону $U_7^{50}(r)$, с учётом периодических граничных условий (частицы находятся в ячейке повторяемости в форме прямоугольного параллелепипеда с центром в начале координат). Массы частиц приняты равными 1.

Программа может работать в двух режимах, которые выбираются ключом командной строки:

- 1. При постоянном объёме (для ячейки с произвольным соотношением сторон).
- 2. Линейная развёртка по длине стороны ячейки (только для кубической ячейки).

3.2.1 Входные данные

На входе программа получает текстовый файл, из которого считывает начальные координаты и скорости частиц и параметры расчёта:

- Δt шаг по времени;
- К число шагов в прогоне;
- K_q число шагов, по которым усредняются P и T (2⁷);
- *K_g* число шагов в промежутке, через который печатается новая геометрия;
- параметры модели ($r_{\rm m} = 1, \, \varepsilon = 1$);
- способ получения начальных скоростей частиц;
- зерно для генератора псевдослучайных чисел (1);
- \mathcal{E} полная энергия системы в расчёте на одну частицу;
- для прогона при постоянном объёме: L_x, L_y, L_z длины сторон ячейки;

 для развёртки по объёму: L₁, L_m — начальная и конечная длины сторон ячейки и m — число точек развёртки.

В скобках приведены значения, остававшиеся неизменными во всех расчётах.

3.2.2 Схема работы программы

При постоянном объёме. Выполняется подготовительная работа, делается *K* шагов прогона и печатается последняя конфигурация частиц и соответствующие ей скорости. Вычисляется функция радиального распределения

$$g(r) = \frac{\rho(r)}{\rho_0} = \frac{\rho(r)}{N/V} = \frac{N_p(r)/\Delta V(r)}{N/V},$$
(14)

где ρ_0 — средняя плотность частиц; $N_p(r) = \frac{1}{N} \sum N_{pi}(r)$, $N_{pi}(r)$ — число частиц, находящихся на расстоянии $r' \in [r - \Delta r/2; r + \Delta r/2]$ от *i*-й частицы; $\Delta V(r)$ — объём, заключённый между сферами радиусов $r - \Delta r/2$ и $r + \Delta r/2$ и приблизительно равный $4\pi r^2 \Delta r$.

Развёртка по объёму. Выставляется начальный размер ячейки L_1 и делается всё то же самое, что и при постоянном объёме. На *i*-ом шаге развёртки выставляется $L_i = L_1 + (L_m - L_1) \frac{i-1}{m-1}$, вектор координат умножается на L_i/L_{i-1} , вычисляется потенциальная энергия U и вектор скоростей умножается на $\sqrt{\frac{E-U}{(\vec{v},\vec{v})/2}}$, где $E = \mathcal{E} \cdot N$ — полная энергия (если E - U < 0, программа прекращает работу).

Подготовительная работа.

- Вычисляется потенциальная энергия *U*. Если *U* > *E*, программа прекращает работу.
- Скорости частиц либо читаются из входного файла, либо с использованием системного ГПСЧ генерируется равномерное или

гауссово [32] распределение компонент вектора скоростей.

- Из вектора скоростей вычитается импульс центра масс.
- Скорости масштабируются так, чтобы они соответствовали средней кинетической энергии (E U)/N.
- Для каждой частицы проверяется, находится ли она внутри ячейки $(x_i \in (-L_x; L_x], y_i \in (-L_y; L_y], z_i \in (-L_z; L_z])$, если нет, программа прекращает работу.

На каждом шаге прогона:

- Обновляются координаты частиц. Если теперь частица по какойлибо координате находится вне ячейки, она сдвигается на соответствующий вектор трансляции так, чтобы снова оказаться в ячейке.
- Вычисляется энергия и её производные по координатам частиц и объёму ячейки.
- После обновления скоростей удаляется возникший из-за ошибок округления импульс центра масс.
- Проверяется сохрание энергии. Вычисляется

$$s = \sqrt{\frac{|E - U|}{\frac{1}{2}(\vec{v}, \vec{v})}},$$

если $|1-s| > 2^{-9}$, Δt считается слишком большим и программа прекращает работу. Обычно $\Delta t = 0.005$ -0.01. Если E - U > 0, вектор скоростей домножается на s.

• Вычисляется средняя по совокупности частиц кинетическая энергия $\frac{1}{2}(\vec{v},\vec{v})/N$ и давление по формуле (3), каждые K_q шагов они усредняются и печатаются.

3.2.3 Расчёт потенциальной энергии и её первых производных

Вся ячейка разбивается на ящики со сторонами a_x, a_y, a_z такими, что $a_x > b, a_y > b, a_z > b$ и в ячейку укладывается целое число ящиков. Тогда частицы из одного ящика заведомо могут взаимодействовать только с частицами из этого же ящика и 26 соседних. Для соблюдения периодических граничных условий нужно учесть взаимодействие ящиков внутри ячейки (*int*) с копиями ящиков, находящимися снаружи (*ext*):

$$U = \sum_{i \le j}^{int} U_{ij} + \sum_{i}^{int} \sum_{k}^{ext} U_{ik}$$

Сначала рассчитывается первое слагаемое (энергия и первые производные по координатам частиц). Для вычисления второго слагаемого нужно для каждого ящика, находящегося у границы ячейки, создать копию, сдвинуть на соответствующий вектор трансляции, например,

Положение ящика	Вектор трансляции \vec{t}
грань $\perp Oz \; (z_i < 0)$	$(0,0,L_z)$
ребро $\parallel Oz \; (x_i < 0, y_i < 0)$	$(L_x, 0, 0), (0, L_y, 0), (L_x, L_y, 0)$
вершина $(x_i < 0, y_i < 0, z_i < 0)$	$(L_x, 0, 0), (0, L_y, 0), (0, 0, L_z),$
	$(L_x, L_y, 0), (0, L_y, L_z),$
	$(L_x, 0, L_z), (L_x, L_y, L_x)$

и рассчитать вклад взаимодействия копии с её новыми соседями в энергию и градиент. Однако можно заметить, что это достаточно проделать только для половины граничных ящиков и удвоить полученные значения. Например, на рис. 2 видно, что вклад пары ящиков с координатами А3 и В3 в точности равен вкладу пары D3 и Е3.

1	9	7	8	9	7
2	3	1	2	3	1
3	6 ←	× ↓ ↓ ↓ 4 ← × 4 ←	<mark>→</mark> 5	6 +	→ 4
4	9	7	8	9	7
5	3	1	2	3	1
	А	В	С	D	Е

Рис. 2: Периодические граничные условия на примере двумерной ячейки из 3² ящиков. «Внутренние» ящики выделены жирным.

Одновременно со вторым слагаемым вычисляется вклад $\partial U/\partial L$ в давление. После получения первых производных по координатам частиц рассчитывается вириал (\vec{r}, \vec{F}) .

3.2.4 Проверка правильности работы программы

- Потенциальная энергия идельного кристалла совпадает с аналитической (раздел 3.3.1).
- Аналитически вычисляемый в программе градиент потенциальной энергии с достаточной точностью совпадает взятым численно по симметричной разностной схеме.
- Аналитически вычисляемое давление совпадает с взятым численно с помощью преобразования растяжения.
- Правильность решения уравнений движения подтверждается сохранением энергии, локальной устойчивостью и сходимостью коротких отрезков траектории при уменьшении шага по времени.

3.3 Численный опыт

3.3.1 Идеальный кристалл

Мы изучили относительную устойчивость кристаллов гексагональной (hcp, пространственная группа $P6_3/mmc$), и кубической (fcc, пространственная группа $Fm\bar{3}m$) плотнейшей шаровой упаковки (puc. 3).

Рис. 3: Элементарные ячейки гексагональной (a) и кубической (b) плотнейшей упаковки.

r_i/r_1	1	$\sqrt{2}$	$\sqrt{8/3}$	$\sqrt{3}$	$\sqrt{11/3}$	2	$\sqrt{5}$	$\sqrt{17/3}$	
n_i , hcp	12	6	2	18	12	6	12	12	
n_i , fcc	12	6	0	24	0	12	24	0	

На расстоянии r_i от частицы находится n_i соседей:

Потенциальная энергия идеального кристалла в расчёте на одну частицу — функция от кратчайшего расстояния $d \equiv r_1$:

$$U_{\text{cryst}} = \frac{1}{2} \sum_{i=1}^{r_i < b} n_i U_7^{50}(r_i) = \frac{1}{2} \sum_{i=1}^{r_i < b} n_i U_7^{50} \left(d \cdot (r_i/r_1) \right)$$

Рис. 4: Шестикратный потенциал взаимодействия двух частиц, зависимость $U_{\rm fcc}$ от d и стократная разность между $U_{\rm fcc}(d)$ и $U_{\rm hcp}(d)$.

Кривые $U_{\rm fcc}(d)$ и $U_{\rm hcp}(d)$ очень близки и схожи с $U_7^{50}(r)$ по форме (рис. 4). Методом золотого сечения были найдены точки минимума:

d	$U_{ m fcc}$	$U_{ m hcp}$	
1	-6.781778	-6.782253	
0.9811006403	-6.8 666 23	-6.866083	min для fcc
0.9811999989	-6.866620	-6.866085	min для hcp

3.3.2 Построение фазовой диаграммы

Фазовая диаграмма построена в координатах $\mathcal{E} - \mathcal{V}$, где $\mathcal{E} = E/N$ — полная энергия в расчёте на одну частицу, $\mathcal{V} = V/N$ — удельный объём. Для различных $\mathcal{E} = \mathcal{E}_0 + \Delta \mathcal{E}$, где $\mathcal{E}_0 \equiv U_{\rm fcc}(1)$, определяются границы фазовых переходов: $\mathcal{V}_{\rm dn}^<$ — наибольший наблюдаемый удельный объём до перехода и $\mathcal{V}_{\rm dn}^>$ — наименьший после перехода.

В качестве исходной конфигурации брались порождённые скриптом на perl координаты, соответствующие идеальному кристаллу кубической плотнейшей упаковки (рис. 5) с заданным d ($\mathcal{V} = d^3/\sqrt{2}$). Расчёты проводились в системе из N = 1372 частиц (7^3 элементарных ячеек). Использовались кристаллы с $\mathcal{V} = \mathcal{V}_{\min}$ (соответствует d, доставляющему минимум U_{fcc}) и $\mathcal{V} = \mathcal{V}_0$ (соответствует d = 1).

Рис. 5: Сгенерированный кристалл.

Для сгенерированного кристалла с заданной \mathcal{E} создавалось гауссово распределение компонент вектора скорости и делался первый прогон ($K = 2^{17}, \Delta t = 0.005$). Для энергий, при которых кристалл плавится при $\mathcal{V} < \mathcal{V}_0$, брали исходный кристалл с $\mathcal{V} = \mathcal{V}_{\min}$, для всех остальных — с $\mathcal{V} = \mathcal{V}_0$.

Рис. 6: Изменение давления при плавлении на начальном участке первого прогона. Здесь и далее *k* — номер шага прогона.

Далее использовали скорости, полученные на предыдущем шаге. Делалась развёртка по длине стороны ($K = 2^{13}$ или 2^{14} , $\Delta t = 0.01$, ΔL от 10^{-1} до 10^{-3}), при этом следили за давлением, температурой и внешним видом системы. Выделили 4 случая.

- 1. При \mathcal{V} выше некоторого порогового значения средняя потенциальная энергия U/N становится больше \mathcal{E} — система не может существовать.
- 2. Давление резко увеличивается (рис. 7, а), и в кристалле образуется пузырь (рис. 9f) переход «кристалл / кристалл + пар».
- 3. Давление резко увеличивается (рис. 7, b), и кристалл полностью разупорядочивается (рис. 9b) переход «кристалл / жидкость».
- 4. Давление резко увеличивается (рис. 7, b), и в жидкости образуется пузырь (рис. 9d) — переход «жидкость / жидкость + пар».

Рис. 7: Изменение давления при расширении ячейки ($\Delta L \approx 0.004$) при полной энергии ниже (a) и выше (b) энергии тройной точки.

Рис. 8: Изменение давления при плавлении при постоянном объёме.

Рис. 9: (a) Кристалл; (b) плавящийся кристалл; (c) жидкость; (d) жидкость с пузырём; (e) жидкость с паром над ней; (f) кристалл с пузырём. 28

Таким путём получали набор систем с разными \mathcal{V} до и после фазового перехода (при необходимости делалась ещё одна развёртка в более узких пределах с меньшим ΔL). За относительно короткие шаги развёртки система не успевает отрелаксировать, и для надёжного установления агрегатного состояния требуются более длительные прогоны.

«Кристалл / жидкость»: система считается находящейся в твёрдом состоянии, если не плавится (рис. 8) за 2²² шагов (2²³ около тройной точки).

«Кристалл / кристалл + пар»: система считается находящейся в твёрдом состоянии, если пузырь не появляется за 2²⁴ шагов.

«Жидкость / жидкость + пар». В отличие от предыдущих случаев, в окрестности перехода при прогоне при постоянном объёме пузырь может то появляться, то исчезать (рис. 10). Поэтому за граничные значения \mathcal{V} принимались те, для которых стандартная ошибка при определении среднего давления мала (примерно на порядок меньше, чем для объёмов, при которых фаза с пузырём и фаза без пузыря сосуществуют).

Рис. 10: Давление при постоянном объёме в окрестности перехода «жидкость / жидкость + пар».

Рис. 11: Давление, усреднённое по 2²² шагам для разных удельных объёмов в окрестности перехода «жидкость / жидкость + пар». Планки погрешностей представляют утроенные стандарные ошибки среднего, вычисленые по (12).

4 Обсуждение

4.1 Кусочно-многочленный потенциал

Варьируя показатели степени p и q в уравнении (13), можно получить семейство приближающих потециал Леннард-Джонса функций. Среди разумных ($p \leq 100$) значений мы выбрали p = 50, q = 7, доставляющие вторую производную в яме ближаюшую ко второй производной потенциала Леннард-Джонса — они отличаются на ~ 0.003%. Для следующей пары (p = 93, q = 14) различие составляет уже ~ 0.016%. Величина третьей производной в яме для всех рассмотренных пар отличается от $\frac{\partial^3 U_{\rm LJ}}{\partial r^3}\Big|_{r_{\rm m}}$ на 2–3%. Несмотря на то, что в нуле потенциал конечен, его величина выше глубины ямы более чем на три порядка; достижение окрестности максимума при значимых для исследования энергиях маловероятно.

Для вычисления значений многочленного потенциала и его производных не требуется дорогостоящих операций деления и взятия квадратного корня, Для вычисления вклада в энергию и градиент одной пары частиц нужно 16 сложений и 21 умножение. Потенциал удобен для векторизации вычислений на современных процессорах.

4.2 Измерение производительности вычислений

Созданная программа собрана компилятором GCC версии 6.3.0 с ключом оптимизации -02 для архитектуры процессора x86_64 и операционной системы GNU/Linux. Программа не параллелизована, но позволяет полностью задействовать мощности современных многоядерных процессоров при одновременном исполнении соответствующего числа независимых задач с различными входными данными. Расчёты проводились на компьютере с восьмиядерным процессором AMD FXTM-8350 с тактовой частотой 4 гигагерца и установленной OC Linux с ядром версии 3.19.

Для оценки производительности программы мы измерили время выполнения восьми одновременно запущенных одинаковых задач. Для двух размеров системы — 1372 и 10976 частиц — при $\Delta E = 2.5$ и $\mathcal{V} \approx 0.83$, что соответствует жидкости вблизи тройной точки, $2^{17} = 131072$ шагов прогона заняли 625 и 5500 секунд счёта, то есть один шаг совершается в среднем за 4.8 и 42 миллисекунды соответственно. Такая производительность позволяет прогонять десятки миллионов шагов для систем с тысячами частиц.

4.3 Агрегатные состояния вещества

Кристалл. Потенциальные энергии идеальных кристаллов кубической и гексагональной плотнейших упаковок близки — при равновесном объёме кубическая выгоднее на 0.008%, в то время как для кристалла Леннард-Джонса на ~ 0.01% выгоднее гексагональная[33]. При уменьшении энергии или объёма ячейки с жидким веществом оно кристаллизуется в плотнейшей упаковке с большим количеством двумерных дефектов. Как исходная конфигурация использовался кубический кристалл, так как он устойчивее и симметричнее; возможность перехода между разными кристаллическими структурами можно исследовать отдельно.

Твёрдое, жидкое и газообразное состояния вещества можно различить невооружённым глазом (рис. 9) или по функции радиального распределения (рис. 12), некоторые затруднения представляет только определение пузыря в жидкости вблизи перехода, поскольку он может то образовываться, то схлопываться (рис. 11).

При дальнейшем увеличении объёма жидкость с пузырём превращается в слой жидкости и слой пара (рис. 9e) и после в каплю

Рис. 12: Функции радиального распределения, вычисленные по (14), для идеального кристалла при T = 0 (a), кристалла при T > 0 (b), жидкости (c), жидкости с паром (d).

жидкости с паром вокруг. При $\Delta \mathcal{E} = 8.47$ капля не испаряется полностью вплоть до $\mathcal{V} \approx 46.3$, а уже при $\Delta \mathcal{E} = 8.48$ вещество однородно, следовательно, критическая энергия $\Delta \mathcal{E}_{крит} = 8.475 \pm 0.005$.

4.4 Фазовая диаграмма

Граничные объёмы $\mathcal{V}_{\phi\pi}^{<}$ и $\mathcal{V}_{\phi\pi}^{>}$ для переходов кристалл / кристалл + пар (возгонка), кристалл / жидкость (плавление), жидкость / жидкость + пар (кипение) и существующее / несуществующее определялись описанным в разделе 3.3.2 способом. Соответствующий фазовому переходу объём равен $\mathcal{V}_{\phi\pi} = \frac{1}{2} \left(\mathcal{V}_{\phi\pi}^{<} + \mathcal{V}_{\phi\pi}^{>} \right) \pm \frac{1}{2} \left(\mathcal{V}_{\phi\pi}^{>} - \mathcal{V}_{\phi\pi}^{<} \right).$

Граница «запрещённой» области в пределе совпадает с отрезком кривой $U_{\rm cryst}(d)$. Ветвь возгонки немонотонна; вероятно, для достоверного обнаружения границ образования пузыря в кристалле требуются более длительные прогоны. Интересно отметить, что при быстрой развёртке вблизи тройной точки ($\Delta \mathcal{E} = 2.31$ –2.32) кристалл начинает плавиться, но при дальнейшем расширении образуется пузырь и жидкость затвердевает.

Полученная фазовая диаграмма представлена на рис. 13, данные для её построения приведены в приложении.

Тройная точка. Энергия в тройной точке $\Delta \mathcal{E}_{triple}$ определяется с точностью до промежутка, с которым брались энергии для рассмотрения. Объём \mathcal{V}_{triple} и его ошибка получены усреднением значений для крайних точек ветвей возгонки, кипения и плавления. Таким образом, $\Delta \mathcal{E}_{triple} = 2.305 \pm 0.005$, $\mathcal{V}_{triple} = 0.858 \pm 0.001$ (для вещества Леннард-Джонса $\mathcal{V}_{triple} \approx 0.83$ [34]).

Рис. 13: Фазовая диаграмма в окрестности тройной точки. Планки погрешностей представляют $\mathcal{V}_{\phi\pi}^{<}$ и $\mathcal{V}_{\phi\pi}^{>}$, точки представляют $\mathcal{V}_{\phi\pi} = \frac{1}{2} \left(\mathcal{V}_{\phi\pi}^{<} + \mathcal{V}_{\phi\pi}^{>} \right).$

5 Выводы

- Найдена возможность построения семейства кусочно-многочленных приближений потенциала Леннард-Джонса в значимой области расстояния между частицами, из которых особенно удобно приближение со степенями p = 50 и q = 7 в уравнении (13).
- В пределе нулевой температуры при равновесном объёме кубическая плотнейшая упаковка идеального кристалла вещества такой модели устойчивее гексагональной плотнейшей упаковки на 0.008%, то есть они очень близки.
- Расчёты микроканонического ансамбля показывают существование у такого вещества твёрдого, жидкого и газообразного состояния, которые можно легко различить.
- 4. В окрестности тройной точки разумен шаг по времени 0.01.
- 5. В пространстве *E V* существуют недостижимая область, её граница совпадает с зависимостью потенциальной энергии идеального кристалла от параметра решётки.
- 6. При медленном изоэнергетическом объёмном расширении жидкого вещества в нём образуются пузыри газа; в твёрдом веществе в зависимости от энергии также образуются пузыри или происходит плавление.

- Чтобы надёжно зафиксировать фазовый переход, требуется не менее 2²³ шагов для плавления и кипения жидкости и 2²⁴ шагов для испарения твёрдого тела.
- 8. На кривой зависимости давления от объёма при постоянной энергии в некоторых областях наблюдаются резкие изменения, что соответствует упомянутым выше переходам.
- 9. Опираясь на эти переходные явления, возможно поточечное построение фазовой диаграммы.
- 10. На фазовой диаграмме обнаруживается тройная точка (твёрдоежидкое-газообразное) с координатами $\Delta \mathcal{E} = 2.305 \pm 0.005, \mathcal{V} = 0.858 \pm 0.001.$

Список литературы

- Equation of State Calculations by Fast Computing Machines / N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth et al. // The Journal of Chemical Physics. 1953. Vol. 21, no. 6. P. 1087–1092.
- [2] Alder B. J., Wainwright T. E. Studies in Molecular Dynamics. I. General Method // The Journal of Chemical Physics. 1959. Vol. 31, no. 2. P. 459–466.
- [3] Wood W. W., Parker F. R. Monte Carlo Equation of State of Molecules Interacting with the Lennard-Jones Potential. I. A Supercritical Isotherm at about Twice the Critical Temperature // The Journal of Chemical Physics. 1957. Vol. 27, no. 3. P. 720–733.
- [4] Verlet L. Computer "Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules // Physical Review. 1967. Vol. 159. P. 98–103.
- [5] Pàmies J. C., Cacciuto A., Frenkel D. Phase diagram of Hertzian spheres // The Journal of Chemical Physics. 2009. Vol. 131, no. 4. p. 044514.
- [6] Hertz H. Ueber die Berührung fester elastischer Körper // Journal fur die Reine und Angewandte Mathematik. 1882. P. 156–171.
- [7] Gibbs J. W. Elementary Principles in Statistical Mechanics. New York: Charles Scribner's Sons, 1902. 207 p.
- [8] Allen M. P., Tildesley D. J. Computer Simulations of Liquids. Oxford: Clarendon Press, 1989.
- [9] Alder B. J., Hoover W. G., Young D. A. Studies in Molecular Dynamics. V. High-Density Equation of State and Entropy for Hard

Disks and Spheres // The Journal of Chemical Physics. 1968. Vol. 49, no. 8. P. 3688–3696.

- [10] Bolhuis P., Frenkel D. Tracing the phase boundaries of hard spherocylinders // The Journal of Chemical Physics. 1997. Vol. 106, no. 2. P. 666–687.
- [11] Hoover W. G., Young D. A., Grover R. Statistical Mechanics of Phase Diagrams. I. Inverse Power Potentials and the Close-Packed to Body-Centered Cubic Transition // The Journal of Chemical Physics. 1972. Vol. 56, no. 5. P. 2207–2210.
- [12] Ландау Л. Д., Лифшиц Е. М. Теоретическая физика. Том 7: Теория упругости. М.: Наука, 1987. С. 44–49.
- [13] Athanasopoulou L., Ziherl P. Phase diagram of elastic spheres // Soft Matter. 2017. T. 13. C. 1463–1471.
- [14] Мейсон Э., Сперлинг Т. Вириальное уравнение состояния. М.: Мир, 1972. 280 с.
- [15] Jones J. E. On the Determination of Molecular Fields. II. From the Equation of State of a Gas // Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. 1924. Vol. 106, no. 738. P. 463–477.
- [16] Kihara T. The Second Virial Coefficient of Non-Spherical Molecules // Journal of the Physical Society of Japan. 1951. Vol. 6, no. 5. P. 289–296.
- [17] Ahmed A., Sadus R. J. Solid-liquid equilibria and triple points of n-6 Lennard-Jones fluids // The Journal of Chemical Physics. 2009.
 Vol. 131, no. 17. p. 174504.

- [18] Buckingham R. A. The Classical Equation of State of Gaseous Helium, Neon and Argon // Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. 1938. Vol. 168, no. 933. P. 264–283.
- [19] Smit B. Phase diagrams of Lennard-Jones fluids // The Journal of Chemical Physics. 1992. Vol. 96, no. 11. P. 8639–8640.
- [20] Toxvaerd S., Dyre J. C. Communication: Shifted forces in molecular dynamics // The Journal of Chemical Physics. 2011. Vol. 134, no. 8. p. 081102.
- [21] Travesset A. Phase diagram of power law and Lennard-Jones systems: Crystal phases // The Journal of Chemical Physics. 2014. Vol. 141, no. 16. p. 164501.
- [22] Frenkel D. Simulations: The dark side // The European Physical Journal Plus. 2013. Vol. 128, no. 1. p. 10.
- [23] Ewald P. P. Die Berechnung optischer und elektrostatischer Gitterpotentiale // Annalen der Physik. 1921. Vol. 369, no. 3. P. 253–287.
- [24] Darden T., York D., Pedersen L. Particle mesh Ewald: An N·log(N) method for Ewald sums in large systems // The Journal of Chemical Physics. 1993. Vol. 98, no. 12. P. 10089–10092.
- [25] Barker J., Watts R. Monte Carlo studies of the dielectric properties of water-like models // Molecular Physics. 1973. Vol. 26, no. 3. P. 789–792.
- [26] Gray C. G., Gubbins K. E. Theory of Molecular Fluids. Volume I: Fundamentals. International Series of Monographs on Chemistry. New York: Oxford University Press, 1984.

- [27] Louwerse M. J., Baerends E. J. Calculation of pressure in case of periodic boundary conditions // Chemical Physics Letters. 2006. Vol. 421, no. 1–3. P. 138–141.
- [28] Хокни Р. Методы расчёта потенциала и их приложения // Вычислительные методы в физике плазмы / под ред. Б. Олдера, С. Фернбаха, М. Ротенберга. М.: Мир, 1974. 514 с.
- [29] A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: Application to small water clusters / W. C. Swope, H. C. Andersen, P. H. Berens et al. // The Journal of Chemical Physics. 1982. Vol. 76, no. 1. P. 637–649.
- [30] Straatsma T. P., Berendsen H. J. C., Stam A. J. Estimation of statistical errors in molecular simulation calculations // Molecular Physics. 1986. Vol. 57, no. 1. P. 89–95.
- [31] Flyvbjerg H., Petersen H. G. Error estimates on averages of correlated data // The Journal of Chemical Physics. 1989. Vol. 91, no. 1. P. 461–466.
- [32] Box G. E. P., Muller M. E. A Note on the Generation of Random Normal Deviates // The Annals of Mathematical Statistics. 1958. Vol. 29, no. 2. P. 610–611.
- [33] Barron T. H. K., Domb C. On the Cubic and Hexagonal Close-Packed Lattices // Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. 1955. Vol. 227, no. 1171. P. 447–465.
- [34] Hansen J.-P., Verlet L. Phase Transitions of the Lennard-Jones System // Physical Review. 1969. Vol. 184. P. 151–161.

Приложение

$\Delta \mathcal{E}$	\mathcal{V}	$\mathcal{V}^<$	$\mathcal{V}^{>}$
-0.0848447	0.66777		
0.1	0.72850	0.72849	0.72852
0.2	0.74592	0.74590	0.74595
0.3	0.76159	0.76156	0.76162
0.4	0.77619	0.77617	0.77621
0.5	0.79006	0.79003	0.79008
0.6	0.80354	0.80350	0.80358
0.7	0.81671	0.81669	0.81674
0.8	0.82970	0.82966	0.82973
0.9	0.84260	0.84257	0.84263
1.0	0.85543	0.85540	0.85545
1.1	0.86804	0.86794	0.86814
1.2	0.88104	0.88095	0.88112

Таблица 1: Данные для построения ветви «существование»

$\Delta \mathcal{E}$	\mathcal{V}	$\mathcal{V}^{<}$	$\mathcal{V}^{>}$
1.25	0.86341	0.86306	0.86376
1.30	0.86482	0.86443	0.86522
1.40	0.86199	0.86161	0.86236
1.50	0.86383	0.86343	0.86424
1.60	0.86633	0.86590	0.86675
1.70	0.86570	0.86529	0.86612
1.80	0.86401	0.86338	0.86464
1.90	0.86485	0.86446	0.86524
2.00	0.86464	0.86422	0.86506
2.10	0.86037	0.85997	0.86078
2.20	0.85658	0.85618	0.85697
2.30	0.85474	0.85437	0.85510

Таблица 2: Данные для построения ветви «возгонка»

$\Delta \mathcal{E}$	\mathcal{V}	$\mathcal{V}^{<}$	$\mathcal{V}^{>}$
2.31	0.85308	0.85270	0.85346
2.32	0.85156	0.85118	0.85194
2.34	0.84778	0.84740	0.84816
2.36	0.84476	0.84438	0.84514
2.38	0.84099	0.84062	0.84137
2.40	0.83773	0.83675	0.83872
2.50	0.82606	0.82489	0.82723
2.70	0.80377	0.80327	0.80427
3.00	0.77723	0.77651	0.77794
3.20	0.76463	0.76425	0.76501
3.50	0.74692	0.74645	0.74739
3.70	0.73649	0.73614	0.73684
4.00	0.72401	0.72311	0.72491
4.20	0.71586	0.71569	0.71603
4.50	0.70615	0.70583	0.70647
5.00	0.69038	0.69006	0.69069
5.50	0.67607	0.67576	0.67638
5.80	0.66930	0.66899	0.66961

Таблица 3: Данные для построения ветви «плавление»

$\Delta \mathcal{E}$	\mathcal{V}	$\mathcal{V}^{<}$	$\mathcal{V}^{>}$
2.31	0.86490	0.86260	0.86720
2.32	0.86643	0.86413	0.86873
2.34	0.86835	0.86643	0.87027
2.36	0.86989	0.86796	0.87181
2.38	0.87142	0.86950	0.87335
2.40	0.87328	0.87136	0.87521
2.50	0.88320	0.88049	0.88592
3.00	0.93443	0.93040	0.93846
3.50	0.99951	0.99360	1.00541
4.00	1.07322	1.06482	1.08162
4.50	1.18097	1.18050	1.18144

Таблица 4: Данные для построения ветви «кипение»