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1 Introduction

The importance of the so-called relativistic effects for accurate description
of molecules containing more or less heavy elements is well understood
and documented [1]. In view of continuous progress in developing Dirac-
Fock based correlated electronic structure methods such as CCSD(T) [2],
it is remarkable that four-component density functional methods are
only recently becoming available. On the other hand the first four-
component density functional calculations (within the Dirac-Slater model)
were reported as early as in 1975 [3]. There can be several reasons that
prevent the wide use of four-component formalisms in quantum chemistry.
Whereas almost all nonrelativistic calculations are done in real numbers,
complex numbers are inevitable in the four-component case. Together
with at least twice larger dimension of the eigenvalue problem (because
of coupling of a- and S-spins) this may lead to much higher computational
requirements. There is also a problem particular to approximate density
functional methods: most commonly used exchange-correlation functionals
depend explicitly upon the spin density, but in the four-component case
only the total density is rotationally invariant, so the spin-unpolarized
versions of the functionals should be used which are less accurate for
systems with unpaired electrons. With this in mind it may appear useful
to have a scalar-relativistic approach which would take into account the
most important relativistic kinematic effects but would allow the separation
of spins and the use of real arithmetic. This can be done by an exact
separation of scalar and spin-orbit contributions [4], even though there is
some controversy about its uniqueness [5]. In this work the computational
efficiency of a preliminary implementation of the scalar relativistic density
functional theory within a Gaussian basis set approach is estimated.



2 Theory

Molecular calculations based on the one-electron Dirac Hamiltonian
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can be conveniently performed within a basis set approach that begins with
some set of primitive scalar functions {g,,(r) } from which a contracted four-
component basis set {x,(r)} is built. It can be chosen to contain functions

of a- and S-spin:
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and the small components formed by contracting corresponding kinetically-
balanced primitive functions:
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where g* | g¥ and g7, are Cartesian derivatives, for example g2, = 0¢;,/0%.
The large and small component contraction coefficients cgw and C}W
should be chosen in an atomically-balanced way — then the approach
is variationally stable for molecules as well. It is trivial to see that the

products of the basis functions have the form:
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It is easy to identify the last terms in Eqns. (6) and (7) and the whole
Eqn. (8) as the spin-orbit contributions, whereas the Vg,, - Vg, terms are
the scalar relativistic contributions.

All the required matrix elements can be easily computed in terms of
simple integrals over primitive basis functions. The overlap and kinetic
energy integrals are:
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where

Sinn = /gm(r)gn(r) dr, Trn, = %/ng(r) - Vgn(r)dr, (11)

The scalar relativistic matrix elements of a local potential are:
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with
Vinn = /v(r)gm(r)gn(r) dr, Vil — /v(r)ng(r) - Vgu(r)dr, (13)

whereas the additional spin-orbit terms (if desired) can be easily evaluated
as:
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and in the same way for VY2 and V="

The potential v(r) can be either nuclear, Coulomb or exchange-
correlation potential as needed in density functional calculations.
Nonrelativistic gradient-corrected models can be used to a good
approximation in the scalar relativistic calculations.



3 Implementation

In the implementation of this work the Coulomb and exchange-correlation
energies are treated using the resolution-of-the-identity approximation,
within which the density is re-expanded in an auxiliary basis set {n,,(r)}:
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Expansion coefficients are determined from the linear equations:
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where the Coulomb integrals (m|uv) in the scalar relativistic case are
computed according to Eqn. (12). The Coulomb and exchange-correlation
energies are then evaluated over the approximate density
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By = /eXC(ﬁa(r)v ﬁﬂ(r)7 Vﬁa<r>7 Vﬁﬁ(r)) dr. (19)
Expressions for the matrix elements of the Coulomb and exchange-
correlation potentials as well as the second order response terms are easy
to derive in the way consistent with these approximations. The approach
on the whole parallels its nonrelativistic analogue [6].

The integral routines are optimized for processing generally-contracted
Gaussian basis sets with shared exponents and are based on the McMurchie-
Davidson algorithm [7]. The Gaussian finite nuclear model [§] is used in
evaluating the nuclear potential integrals. The SCF equations are solved
by the quadratically-convergent method in which the second-order response
contributions are computed neglecting small-component terms — this does
not degrade the convergence and allows appreciable time savings. Analytic
energy gradients with respect to nuclear positions are available for geometry
optimizations.

The generalized gradient approximation of Perdew-Burke-Ernzerhof [9]
has been chosen in this work due to its sound theoretical derivation and
simple analytical form free of adjustable parameters.



4 Applications

To estimate the performance of the present approach geometry optimiza-
tions have been performed for two moderately large molecules: a binuclear
uranium complex [UsHy(CsHs)4) (fig. 1), known as an alkene hydrogenation

catalyst, and its adduct with ethylene [(CoHy)UoHy(C5Hs)4] (fig. 2).

S~

o—_ }/ >

Figure 1: complex [UyH,(CsHs)4]

The generally-contracted atomic basis sets have the dimensions:
(bslp)/[3slp] for H, (11s6p2d)/[4s3p2d] for C, (27s25p18d13f)/[9s8p6d4f]
for U and are derived from the primitive basis sets optimized in spherically-
averaged atomic calculations. Generally-contracted auxiliary basis sets
have the dimensions: (4slp)/[3slp| for H, (8s3p3dif)/[5s2p2d1f] for C,
(25s9p9d8f8gThT7i) /[20s5p5d4fdg3h3i] for U and are optimized to represent
the one-center products of the primary basis functions. The total number
of primary (auxiliary) basis functions is 856 (1176) for the larger molecule.

The calculations have been performed on a two-processor 350MHz
Pentium-II computer using the parallelized version of the code. On the
average, one cycle of geometry optimization took 2-3 hours of wall time.
For these particular systems the convergence of SCF process is rather slow,
and on the first geometry up to 8 hours were necessary. About 50% of the
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Figure 2: complex [(CQH4)U2H4(C5H5)4]

CPU time corresponds to the formation of the Coulomb-type integrals, 30%
to numerical integration of the exchange-correlation contributions, 17% to
the matrix multiply and about 3% to the sequential diagonalization which
is used at the beginning and at the end of the SCF process.

The calculations predict quintet ground state for both complexes which
is consistent with the f2—f? effective configuration of the metal centers. The
binding energy of ethylene is predicted to be 23.2 kcal /mol. Further studies
may lead to a detailed picture of the catalytic hydrogenation process.

5 Conclusions

The scalar relativistic approach implemented in this work seems to be
quite inexpensive and can be used for structure optimizations for molecules
of moderate size. We hope that after further testing and debugging the
computer code developed will be made available to interested researchers
in the near future.
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